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1. INTRODUCTION

The one-degree-of-freedom system whose motion is described with a di!erential equation
with pure cubic non-linearity is discussed in references [1}6]. It is shown that there exists
a closed form analytic solution of the equation. The motion is described with a Jacobi
elliptic function [7]. For two-degrees-of-freedom systems which are described with a system
of two coupled strong non-linear di!erential equations the closed form solutions are found
only for some special cases (see references [8}11]). Analytic solutions based on Jacobi
elliptic functions are obtained.

In this paper a special case of a two-degree-of-freedom system is considered. The
non-linearities of the system are strong and of a cubic type and the di!erential equations are

xK#x (x2#3y2)"ef
1
(x, y, xR , yR ),

yK#y (y2#3x2)"ef
2
(x, y, xR , yR ), (1)

where x, y are generalized co-ordinates of the system, ( 5 )"d/dt, ( K )"d2/dt2, ef
i
are small

non-linearities, i"1, 2.
The aim of the paper is to obtain closed form analytic solutions for the system of two strongly

coupled non-linear di!erential equations (1) for e"0. Using the generalized solutions the
approximate solutions of equations (1) are denoted. The method of Krylov}Bogolubov [12] is
extended for solving the system of di!erential equations whose generalized solutions are elliptic
functions. The case when the cubic term is of a total type is specially considered. The
approximate analytic solutions are compared with exact numeric ones.

2. GENERALIZED SOLUTIONS

Let us consider the case when e"0. System (1) transforms to

xK#x3#3xy2"0, yK#y3#3x2y"0. (2)

These are two coupled di!erential equations with strong cubic non-linearities. There exists
a Hamiltonian which represents the total energy function

H"1
2
(x2

1
#y2

1
)#1

4
(x4#y4 )#3

2
x2y2, (3)

where x
1
"dx/dt, y

1
"dy/dt.
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Using the direct Lyapunov method of stability [13] it can be concluded that the motion
of system (2) is stable, as function (3) is positive de"nite and its time derivative is zero.

As shown below, the motion of the system is periodic and has an exact analytical solution
of the form
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2
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,
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where A
1
, A

2
are the amplitudes of vibrations, h

1
, h

2
are initial phases of vibrations, cn and

sd are Jacobi elliptic functions [14] with the frequency parameters u
1

and u
2

and modulus
k
1

and k
2
.

Di!erentiating twice with respect to time the solutions (4) it follows that
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Substituting equations (4) and (5) into equation (1) and separating the terms with the
functions cn

1
, cn3

1
, sd

2
, sd3

2
a system of four algebraic equations is obtained:
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From equations (6) the parameters of the elliptic functions are
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1
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1
"1/2,
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2
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2
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2
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It can be seen that the modulus k
1

and k
2

have equal values and the modulus is constant.
The frequencies of the vibrations are di!erent in the general case, and depend on the
amplitudes of vibrations.

Substituting equation (7) into equation (4) the general solutions are
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where A
1
, A

2
, h

1
and h

2
depend on the initial conditions. Assume that the initial conditions

are in the general form

x(0)"x
0
, y (0)"y

0
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, yR (0)"yR

0
. (9)
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Substituting the initial conditions (9) into equation (8) the following system of equations
is obtained:
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Solving system (10) gives
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and the phase angles of vibrations are obtained by solving the equations
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where sc, cs, nd and dn are the Jacobi elliptic functions [15].
(1) Now assume that the motion of system starts with zero velocity, i.e.,
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0
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0
"0. (13)

The parameters of the system are
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where K(1/2)"1)85407 is the total elliptic integral of the "rst kind [15]. The solutions of
equations (2) for the initial conditions (13) are
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For the initial conditions x
0
"1)5, xR

0
"0, y

0
"0)5, yR

0
"0 solutions (15) are plotted in

Figure 1. The motions of both the oscillators are periodic.



Figure 1. The x}t and y}t diagrams for the initial conditions x
0
"1)5, x

0
"0, y

0
"0)5, y

0
"0.
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(2) If the initial conditions are

x (0)"x
0
, y (0)"0, xR (0)"0, yR (0)"0, (16)

the solutions are

x"x
0
cn (x

0
t, 1/2), y"0, (17)

since

cn (x
0
t, 1/2)"

1

J2
sd (x

0
t#K(1/2), 1/2). (18)

Then, only one oscillator moves and the other is motionless. In Figure 2, solutions (17) for
the initial conditions x (0)"1)5, y(0)"0, xR (0)"0, yR (0)"0 are plotted. The movement of
the oscillator is periodic.



Figure 2. The x}t and y}t diagrams for the initial conditions x
0
"1)5, x

0
"0, y

0
"0, y

0
"0.
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3. APPROXIMATE SOLUTIONS

Now consider the case when the motions are described with equations (1). According to
the Krylov}Bogolubov method [12] we assume that the trial solutions are in the form of
general solutions (4) and they are
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where
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The "rst time derivatives have the same form as the "rst time derivatives of equation (4) and
they are
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The second time derivatives of the solutions are
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Substituting equations (19) and (23) into equation (1) and using relations (22) results in
a system of two "rst order di!erential equations:
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Transforming equations (22) and (24) gives the following system of equations:
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This system of equations gives the four unknown functions A
1
(t), A

2
(t), h

1
(t) and h

2
(t). To

"nd the solutions of these equations is not an easy task. We will introduce the averaging
procedure for both the angles t

1
and t

2
. The averaged "rst order di!erential equations are
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where K
1
"K

2
"K(1/2) is the total elliptic integral of the "rst kind [7].
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4. AN EXAMPLE

Consider the case when the small non-linearities are

f
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For e"1 the non-linearities are of the total cubic type and are considered in reference [11].
Using the assumed solutions (19) functions (27) are
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Substituting equation (28) into equation (26) and integrating the averaged equations gives
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where A
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(0) and h

2
(0) are the initial amplitudes and phases of the system.

The approximate solutions for system (27) are
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Consider next the initial conditions x
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Figure 3. The analytically, x
a
}t, y

a
}t, and numerically, x

n
}t, y

n
}t, obtained diagrams for the small parameter

e"0)01.
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These solutions (x
a
, y

a
) are compared with those obtained numerically (x

n
, y

n
) applying the

Runge}Kutta method. From Figure 3, it can be seen that the motions are periodical. The
di!erences between the approximate analytic and exact numeric results are negligible even
for large values of time.

The analytic (x
a
, y

a
) and numeric solutions (x

n
, y

n
) which are determined for e"0)1 are

shown in Figure 4. The approximate analytic solutions are

x
a
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y
a
"cn (1)94t, 1/2)!0)3525sd(1)033t#1)85407, 1/2). (33)

It can be seen that the solutions are periodic. The approximate analytic solutions di!er
signi"cantly from the exact numeric results. The di!erence is higher for larger values
of time.



Figure 4. The analytically, x
a
}t, y

a
}t, and numerically, x

n
}t, y

n
}t, obtained diagrams for the small parameter

e"0)1.
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